skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hydrogels are widely used in tissue engineering but conventional homogeneous polymerization often creates dense matrices that hinder cell migration and restrict extracellular matrix production. The motivation of this project was to overcome these limitations by developing a heterogeneously crosslinkable hydrogel platform that enables both cell migration and matrix deposition. We present a two-step heterogeneous polymerization approach that introduces spatial variations in matrix density, producing tunable, cell-sized pores that promote migration, proliferation, and matrix synthesis. As an implementation, gelatin was pre-assembled into microribbon-like building blocks using a Dynamic Molding process, methacrylated to introduce crosslinkable groups, chemically modified, washed, and freeze-dried. Upon rehydration, the ribbons formed a moldable paste that could be mixed with cells and photo-crosslinked into scaffolds with in situ–formed, cell-sized pores. The main novelty of this method is the introduction of chemical modifications with methacrylic anhydride (MAA), acetic anhydride (AceA), and succinic anhydride (SucA), which enable a controlled two-step heterogeneous polymerization and allow independent tuning of scaffold microstructure, mechanics, and degradation. AceA reduced crosslink density and accelerated degradation, whereas SucA promoted swelling, enhanced mechanical strength, and slowed degradation. Cell studies revealed that SucA-modified scaffolds supported superior adhesion and proliferation compared to AceA-modified and unmodified controls. Such work may significantly impact the design of next-generation scaffolds by providing a versatile platform that integrates structural, mechanical, and biochemical control for regenerative medicine applications. 
    more » « less
  2. Abstract The gold standard to measure arterial health is vasodilation in response to nitric oxide. Vasodilation is generally measured via pressure myography of arteries isolated from animal models. However, animal arteries can be difficult to obtain and may have limited relevance to human physiology. It is, therefore, critical to engineer human cell-based arterial models capable of contraction. Vascular smooth muscle cells (SMCs) must be circumferentially aligned around the vessel lumen to contract the vessel, which is challenging to achieve in a soft blood vessel model. In this study, we used gelatin microribbons to circumferentially align SMCs inside a hydrogel channel. To accomplish this, we created tunable gelatin microribbons of varying stiffnesses and thicknesses and assessed how SMCs aligned along them. We then wrapped soft, thick microribbons around a needle and encapsulated them in a gelatin methacryloyl hydrogel, forming a microribbon-lined channel. Finally, we seeded SMCs inside the channel and showed that they adhered best to fibronectin and circumferentially aligned in response to the microribbons. Together, these data show that tunable gelatin microribbons can be used to circumferentially align SMCs inside a channel. This technique can be used to create a human artery-on-a-chip to assess vasodilation via pressure myography, as well as to align other cell types for 3Din vitromodels. 
    more » « less
  3. Abstract Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration. 
    more » « less